Расчетное сопротивление бетона: особенности сопротивляемости

Расчётное сопротивление бетона сжатию таблица

Бетонные конструкции изготавливаются в расчете на то, что они способны переносить высокие нагрузки без каких-либо разрушений. Характеристики сооружений из бетона закладываются в проект — это сопротивление бетона сжатию, прочность, плотность, долговечность и т.д.

Бетон – материал разнородный, поэтому различные локальные участки конструкции могут обладать разной прочностью и разным сопротивлением к нагрузкам. И расчет прочности необходим, чтобы уточнить нормативные показатели материала.

Что такое расчетные параметры, и как их узнают?

Что такое расчетное сопротивление

Этот параметр можно узнать и рассчитать методом простого деления указанных в ГОСТ 12730.0-78 сопротивлений на надежность, которая отражается в виде определенного коэффициента. При вычислениях сопротивления бетона этот коэффициент зависит от типа стройматериала.

График прочности на растяжение по осям

[ads-pc-1]
[ads-mob-2]

Значения расчетных сопротивлений материалов обозначаются, как Rb и Rbt, их показатели можно менять в сторону уменьшения или увеличения методом умножения на коэффициент состояния эксплуатации бетона γbi, который отражает пропорциональность значений от времени прикладывания нагрузки; цикличность нагружений; параметры, свойства и временной отрезок эксплуатации сооружения; метод изготовления; сечение, площадь, и т.д. Узнать конкретное расчётное сопротивление бетона сжатию таблица значений которых отражает математические вычисления, а не физические данные, можно для востребованных промышленностью классов:

Сопротивление, тип Тип Расчетные показатели для максимально нагруженных состояний 1-й группы Rb и Rbt, МПа, для разных классов прочности
B 10 B 12,5 B 15 B 20 B 25 B 30 B 35
Сжатие по оси, Rb Мелкофракционный тяжелый бетон 6,0 7,50 8,5 11,5 14,50 17,0 19,50
Растяжение по оси, RM Тяжелый бетон 0,57 0,66 0,75 0,90 1,050 1,20 1,30

Как рассчитывается прочность? Существуют определенные значения прочности, заниженные для обеспечения надежности. Эти установленные параметры и есть расчетные показатели, зависящие от фактических результатов испытаний.

Нормативное сопротивление

  1. Параметр отражает показатель материала по сжатию (сжатие бетонной призмы по оси при испытаниях) Rbn и Rbtn по растяжению;
  2. Значения для максимально нагруженных состояний 1-го состава Rb, Rbt и 2-го состава Rb,ser, Rbt,ser вычисляются методом деления этих параметров согласно ГОСТ на прикрепленные коэффициенты надежности – соответственно gbc и gbt;
  3. Значение по ГОСТ Rbn, зависящие от класса по прочности на сжатие;
  4. Установленное значение Rbtn при неконтролируемой прочности материала определяется по классу прочности, и воспринимается как обеспеченная прочность при растяжении;
  5. Согласно п.2 параметры 1-го типа Rb и Rbt могут изменяться. Для этого Rb и Rbt умножаются на параметр gbi;
  6. Параметры 2-го типа Rb,ser и Rbt,ser зависят от показателя gbi, и при нормальной нагруженности материала в 1,0. Для некоторых легких бетонов используются и другие показатели Rb,ser и Rbt,ser по согласованию с проектировщиками;
  7. Первоначальный модуль упругости Eb определяется по таблице ниже. Если бетонный объект эксплуатируется в климатическом регионе IVА, и не обеспечен защитой от УФ излучения, то параметры Eb умножаются на 0,85.
Тип сопротивления Rb,n и Rbt,n согласно ГОСТ, и Rb,ser и Rbt,ser (Мпа)
B 10 B 15 B 20 B 25 B 30 B 35 B 40 B 45 B 50 B 55 B 60
Сжатие по оси Rb,m и Rb,ser 7,5 11 15 18,50 22,0 25,50 29 32 36 39,50 43
Растяжение по оси Rbt,r и Rbt,ser 0,85 11 1,35 1,55 1,75 1,95 29 2,25 2,45 2, 2,75

Структура бетона

[ads-pc-1]
[ads-mob-3]

В таблице указано расчетное сопротивление бетона осевому сжатию по СП 52-101-2003

Тип сопротивления Сопротивление согласно ГОСТ Rb и Rbt,и Rb,ser и Rbt,ser (Мпа)
B 10 B 15 B 20 B 25 B 30 B 35 B 40 B 45 B 50 B 55
Сжатие по оси Rb 6 8,5 11,5 14,5 17 19,5 22 25 27,5 30
Растяжение по оси Rbt 0,56 0,75 0,9 1,050 1,15 1,30 1,40 1,50 1,60 1,70

Сопротивление по ГОСТ или СП зависит от прочности испытываемых образцов (кубиковая нормативная прочность).

Rb и Rbt для осевых растяжений при определении класса бетона устанавливается с зависимостью от прочности согласно ГОСТ испытываемых образцов типов бетона с контролем приготовления раствора. Нормативная кубиковая и призменная прочность на сжатие и на растяжение имеют определенное соотношение, устанавливаемое при стандартных испытаниях бетонных образцов.

Требования к автоклавному бетону

Марка Первоначальный модуль упругости Еb автоклавного материала
Сжатие и растяжение, МПа
B 1,5 B 2 B 2,5 B 3,5 B 5 B 7,5
D 300 900 1000
D 400 1100 1200 1300
D 500 1300 1500 1600 1700
D 600 1500 1600 1700 1800 1900
D 700 1900 2200 2500 2900 3200 3400

Ячеистый бетон

[ads-pc-1]
[ads-mob-2]

Рассчитывая класс бетона по прочности на растяжение по осям, стандартные значения Rb и Rbt берутся как свойство класса, выраженное в цифрах, которые идут после символа «B». Определяющие свойства деформаций бетона — это:

  • Максимальные относительные деформации при сжатии-растяжении по осям: Ɛbo,n и Ɛbto,n;
  • Первоначальный модуль упругости Eb,n;

Дополнительные свойства деформаций бетона:

  • Первичный коэффициент поперечных деформаций «v»;
  • Сдвиг по модулю «G»;
  • Коэффициент температурных деформаций αbt;
  • Деформации, зависящие от свойств ползучести раствора Ɛсг;
  • Деформации, зависящие от усадки материала εshr.

Характеристики деформаций определяются, исходя из класса и марки, плотности и технологических показателей бетона.

Механические показатели бетона для напряженного состояния по одной оси в общих случаях характеризуются диаграммой деформирования материала, отражающей зависимость напряжений Σb,n (Σbt,n) и относительных продольных деформаций Εb,n (Εbt,n) бетона в растянутом или сжатом состоянии при импульсном приложении нагрузки.

Виды деформаций

[ads-pc-1]
[ads-mob-3]

При расчетах прочности бетонных конструкций основные характеристики, влияющие на конечный результат – это окончательное и фактическое сопротивление бетона Rb и Rbt.

Характеристики прочности, полученные в результате вычислений, рассчитываются как стандартные сопротивления материала Rb,m и Rb,ser, а также Rbt,r и Rbt,ser, поделенные на gbc и gbt и.

 Показания gbc и gbt зависят от типа бетона, просчитанных свойств материала, предельных состояний при различных нагрузка, но должны не выходить за следующие рамки:

Для коэффициента gbc:

  1. 1,3 — для максимальных и минимальных нагрузок 1-го состава бетона;
  2. 1,0 — для максимальных и минимальных нагрузок 2-го состава;

Для коэффициента gbt:

  1. 1,5 — для максимальных и минимальных нагрузок 1-го состава при определении класса на сжатие по осям;
  2. 1,3 – для максимальных и минимальных нагрузок 1-го состава при определении класса на растяжение по осям;
  3. 1,0 — для максимальных и минимальных нагрузок 2-го состава бетона.

Для максимальных и минимальных нагрузок 1-го и 2-го состава показатели деформаций материала берутся из их значений, указанных в ГОСТ и СНиП.

 Также при вычислении значений R свойства нагрузок, влияние атмосферных осадков, температуры, напряженности материала и конструкции из бетона корректируются коэффициентами условий эксплуатации конструкции γbi, и отражаются на расчетных деформационных и прочностных параметрах строительного материала.

Диаграммы деформаций конструкций из бетона вычерчиваются, опираясь на метод замены стандартных показателей на расчетные параметры.

Диаграммы деформаций

[ads-pc-1]
[ads-mob-3]

Характеристики прочности при двухосном или трехосном приложении напряжений определяются по типу и классу бетона, исходя из связи между максимальными и минимальными значениями напряже­ний, приложенных в 2-х или 3-х перпендикулярах.

 Деформирование бетонного объекта вычисляется по плоскому или объемному приложению напряжений. Если конструкция имеет дисперсно-армированное состояние, то для нее принимаются характеристики, как для обычных бетонных или ж/б сооружений.

При работе с фибробетоном его свойства определяются, исходя из физико-эксплуатационных характеристик смеси, также берется в расчет форма, габариты, геометрия и распределение фибр в составе, сцепление фибр с раствором. Определяющие характеристики прочности и возможности деформирования армирования — это стандартные параметры прочности и свойства деформа­ции.

Неупругие деформации

Основное определение прочности материала армирования при нагрузках на растя­жение-сжатие — это установленное ГОСТ сопротивление Rs,n, которое принимается равным показателю эксплуатационного предела текучести или такого же условного предела, который будет соответствовать окончательному удлинению или укорочению, принимаемому как 0,2%. Также ограничение Rs,n происходит по показателям, соответствующим деформирующим нагрузкам, которые равны максимальным показателям деформации бетона вокруг сжатой арматуры при укорочении.

Читайте также:  Проекты домов из газобетона с мансардой и эркером: фото и видео

Понятия прочности и класса

Прочность по марке использовалась до введения евростандартов, и ею обозначалась средняя устойчивость на сжатие. Новые СНиП регламентируют классы прочности при сжатии-растяжении.

Нарастание прочности

[ads-pc-1]
[ads-mob-3]

Понятие «класс» означает сопротивление материала согласно СП сжатию бетонного куба по оси. Эталонные габариты куба – 15 х 15 см. Из-за неравномерности распределения параметров прочности по всему материалу использование среднеарифметических показателей прочности не рекомендовано, так как на локальном участке объективная прочность может быть меньше.

Основная характеристика длительности эксплуатации бетонного объекта – это его класс. При определении класса принимается во внимание и осевое сжатие, и осевое растяжение, значения которых определяются с запасом прочности через удельное сопротивление элементов.

Предельно допустимые напряжения

Формула определения сопротивления нагрузкам сжатия: R = Rn /g;

Где g – коэффициент прочности материала, принимаемый как 1,0. Чем однороднее бетон, тем коэффициент g ближе к единице.

Дополнительные параметры для расчетов:

  1. Электрическое удельное сопротивление раствора;
  2. Влагостойкость – ее параметры необходимы, чтобы знать максимальное давление жидкой среды, которое может выдержать бетон;
  3. Воздухопроницаемость связана с прочностью, и имеет постоянное значение в диапазоне 3-130 c/см3.
  4. Морозостойкость обозначается символом «F» и числами от 50 до 1000, означающими количество циклов заморозки-разморозки;
  5. Теплопроводность влияет на плотность материала. Чем больше воздуха в бетоне, тем меньше плотность и теплопроводность;

Визуальное выявление трещин в образцах

[ads-pc-1]
[ads-mob-3]

Продольные трещины в испытываемых призменных образцах появляются под действием поперечных нагрузок.

Прочность образца увеличивается при стягивании бетона хомутами, но разрушение произойдет в любом случае, и трещины появятся позже. Такое отодвигание разрушения во времени называется эффектом обоймы.

Хомут, сжимающий элемент, можно заменить укладкой в раствор поперечной стержневой арматуры, металлической сетки или спирали из стали.

  1. Марка обозначается символом «M», и означает среднюю кубиковую прочность Rв, которая выражается в кг/см2. Следующие за латинской буквой числа – это прочность;
  2. Класс – символ «B», обозначающий кубиковую прочность (Мпа) с вероятностью 0,95. Неоднородность прочности материала колеблется в пределах Rmin-Rmax.

Предварительно напряженные железобетонные конструкции

Конструкция или элемент из железобетона, нагруженный искусственно созданными внутренними напряжениями, направленные обратно реальным физическим нагрузкам при эксплуатации объекта. Искусственные напряжения появляются после внедрения в тело конструкции предварительно напряженной арматуры. Сделать это можно так:

  1. При заливке раствора в конструкции оставляют пазы, в которые укладывается арматура (сетка, стержни, спирали). Набор прочности завершается натягиванием арматурной сетки или другого типа арматуры с креплением концов по бокам элемента. Натягивание арматуры сопровождается сжатием бетона. Усилие натяжения обозначается символом «Р»;
  2. Арматура натягивается перед заливкой раствора (т.н. натяжение на упоры), а после отвердения смеси отпускается, что и создает напряжение сжатия.

Еще один вариант создания предварительного напряжения – заливка специального напрягающего цемента марки НЦ. Затвердевая, объем конструкции из цемента этой марки увеличивается, при этом растягивается и арматура, создавая напряжение растяжения.

Расчётное сопротивление бетона обновлено: Апрель 28, 2018 автором: Артём

Источник: http://okbeton.ru/raschet/raschjotnoe-soprotivlenie-betona-szhatiju.html

Расчетное и нормативное сопротивления бетона сжатию, растяжению

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений.

В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон имеет определенную неоднородность.

Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных значений несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности во время определения класса на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные данные, γb – коэффициент.

Аналогично рассчитывают показатель расчетного сопротивления бетона по осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные данные на осевое растяжение, множитель Rbtn – нормативные данные на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась его марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе.

Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

Используя эти таблицы можно, имея данные на сжатие, сразу определить его показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация.

Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС.

При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали.

В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций.

Вводятся коэффициенты надежности по бетону, виды используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Читайте также:  Бетон в20 бст: технические характеристики, плотность и вес

Источник: https://betonpro100.ru/harakteristiki-i-svojstva/raschetnoe-i-normativnoe-soprotivleniya

Нормативные и расчетные характеристики бетона и арматуры

12 мая 2016 г.

Основными показателями прочности и деформативности бето­на являются нормативные значения их прочностных и деформаци­онных характеристик. 

Основными прочностными характеристиками бетона являются нормативные значения:

  • сопротивления бетона осевому сжатию Rb,n;
  • сопротивления бетона осевому растяжению Rbt,n.

Нормативное значение сопротивления бетона осевому сжатию (призменная прочность) следует устанавливать в зависимости от нормативного значения прочности образцов-кубов (нормативная кубиковая прочность) для соответствующего вида бетона и контро­лируемого на производстве. 

Нормативное значение сопротивления бетона осевому растяже­нию при назначении класса бетона по прочности на сжатие следует устанавливать в зависимости от нормативного значения прочности на сжатие образцов-кубов для соответствующего вида бетона и кон­тролируемого на производстве. 

Соотношение между нормативными значениями призменной и кубиковой прочностями бетона на сжатие, а также соотношение между нормативными значениями прочности бетона на растяжение и прочности бетона на сжатие для соответствующего вида бетона следует устанавливать на основе стандартных испытаний. 

При назначении класса бетона по прочности на осевое растяже­ние нормативное значение сопротивления бетона осевому растяже­нию принимают равным числовой характеристике класса бетона по прочности на осевое растяжение, контролируемой на производстве. 

Основными деформационными характеристиками бетона явля­ются нормативные значения: 

  • предельных относительных деформаций бетона при осевом сжатии и растяжении εbo,n и εbto,n ;
  • начального модуля упругости бетона Еb,n.
  • Кроме того, устанавливают следующие деформационные харак­теристики:
  • начальный коэффициент поперечной деформации бетона v;
  • модуль сдвига бетона G;
  • коэффициент температурной деформации бетона αbt;
  • относительные деформации ползучести бетона εсг (или соот­ветствующие им характеристику ползучести φb,cr меру ползу­чести Cb,cr;
  • относительные деформации усадки бетона εshr.

Нормативные значения деформационных характеристик бето­на следует устанавливать в зависимости от вида бетона, класса бе­тона по прочности на сжатие, марки бетона по средней плотности, а также в зависимости от технологических параметров бетона, если они известны (состава и характеристики бетонной смеси, способов твердения бетона и других параметров). 

В качестве обобщенной характеристики механических свойств бетона при одноосном напряженном состоянии следует принимать нормативную диаграмму состояния (деформирования) бетона, уста­навливающую связь между напряжениями σb,n (σbt,n) и продольны­ми относительными деформациями εb,n (εbt,n) сжатого (растянуто­го) бетона при кратковременном действии однократно приложен­ной нагрузки (согласно стандартным испытаниям) вплоть до их нормативных значений.  

Основными расчетными прочностными характеристиками бе­тона, используемыми в расчете, являются расчетные значения со­противления бетона:

  • осевому сжатию Rb;
  • осевому растяжению Rbt.

Расчетные значения прочностных характеристик бетона следу­ет определять делением нормативных значений сопротивления бе­тона осевому сжатию и растяжению на соответствующие коэффи­циенты надежности по бетону при сжатии и растяжении. 

Значения коэффициентов надежности следует принимать в за­висимости от вида бетона, расчетной характеристики бетона, рас­сматриваемого предельного состояния, но не менее: 

  • для коэффициента надежности по бетону при сжатии:
  1. 1.3  — для предельных состояний первой группы;
  2. 1.0  — для предельных состояний второй группы;
  • для коэффициента надежности по бетону при растяжении:
  1. 1,5 — для предельных состояний первой группы при назначе­нии класса бетона по прочности на сжатие;
  2. 1.3  — то же, при назначении класса бетона по прочности на осевое растяжение;
  3. 1.0  — для предельных состояний второй группы.

Расчетные значения основных деформационных характеристик бетона для предельных состояний первой и второй групп следует принимать равными их нормативным значениям. 

Влияние характера нагрузки, окружающей среды, напряженно­го состояния бетона, конструктивных особенностей элемента и дру­гих факторов, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характе­ристиках бетона коэффициентами условий работы бетона γbi.

Расчетные диаграммы состояния (деформирования) бетона сле­дует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения. 

Значения прочностных характеристик бетона при плоском (двухосном) или объемном (трехосном) напряженном состоянии следует определять с учетом вида и класса бетона из критерия, выражающего связь между предельными значениями напряже­ний, действующих в двух или трех взаимно перпендикулярных направлениях. 

Деформации бетона следует определять с учетом плоского или объемного напряженных состояний. 

Характеристики бетона — матрицы в дисперсно-армированных конструкциях следует принимать как для бетонных и железобетон­ных конструкций. 

Характеристики фибробетона в фибробетонных конструкциях следует устанавливать в зависимости от характеристик бетона, от­носительного содержания, формы, размеров и расположения фибр в бетоне, ее сцепления с бетоном и физико-механических свойств, а также в зависимости от размеров элемента или конструкции. 

Основными показателями прочности и деформативности арма­туры являются нормативные значения их прочностных и деформа­ционных характеристик. 

Основной прочностной характеристикой арматуры при растя­жении (сжатии) является нормативное значение сопротивления Rs,n, равное значению физического предела текучести или условного, соответствующего остаточному удлинению (укорочению), равному 0,2%. Кроме того, нормативные значения сопротивления арматуры при сжатии ограничивают значениями, отвечающими деформаци­ям, равным предельным относительным деформациям укорочения бетона, окружающего рассматриваемую сжатую арматуру.  

Основными деформационными характеристиками арматуры являются нормативные значения: 

  • относительных деформаций удлинения арматуры εs0,n при до­стижении напряжениями нормативных значений Rs,n;
  • модуля упругости арматуры Es,n.

Для арматуры с физическим пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n опре­деляют как упругие относительные деформации при нормативных значениях сопротивления арматуры и ее модуля упругости. 

Для арматуры с условным пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n опре­деляют как сумму остаточного удлинения арматуры, равного 0,2%, и упругих относительных деформаций при напряжении, равном условному пределу текучести. 

Для сжатой арматуры нормативные значения относительной деформации укорочения принимают такими же, как при растяже­нии, за исключением специально оговоренных случаев, но не более предельных относительных деформаций укорочения бетона. 

Нормативные значения модуля упругости арматуры при сжа­тии и растяжении принимают одинаковыми и устанавливают для соответствующих видов и классов арматуры.

В качестве обобщенной характеристики механических свойств арматуры следует принимать нормативную диаграмму состояния (деформирования) арматуры, устанавливающую связь между напря­жениями σs,n и относительными деформациями εs,n арматуры при кратковременном действии однократно приложенной нагрузки (со­гласно стандартным испытаниям) вплоть до достижения их уста­новленных нормативных значений.

Диаграммы состояния арматуры при растяжении и сжатии при­нимают одинаковыми, за исключением случаев, когда рассматрива­ется работа арматуры, в которой ранее были неупругие деформа­ции противоположного знака. 

Характер диаграммы состояния арматуры устанавливают в за­висимости от вида арматуры. 

Расчетные значения сопротивления арматуры Rs определяют делением нормативных значений сопротивления арматуры на ко­эффициент надежности по арматуре. 

Значения коэффициента надежности следует принимать в зави­симости от класса арматуры и рассматриваемого предельного со­стояния, но не менее: 

  • при расчете по предельным состояниям первой группы — 1,1;
  • при расчете по предельным состояниям второй группы — 1,0.

Расчетные значения модуля упругости арматуры Es принимают равными их нормативным значениям.

Влияние характера нагрузки, окружающей среды, напряженно­го состояния арматуры, технологических факторов и других усло­вий работы, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характе­ристиках арматуры коэффициентами условий работы арматуры γsi.  

Расчетные диаграммы состояния арматуры следует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения.

Источник: http://ros-pipe.ru/tekh_info/tekhnicheskie-stati/proektirovanie-zdaniy-i-sooruzheniy/normativnye-i-raschetnye-kharakteristiki-betona-i-/

Расчетное сопротивление бетона

Нормативные сопротивления бетона – это сопротивление осевому сжатию бетонных призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn, которые определяются в зависимости от класса бетона по прочности (при обеспеченности 0,95).

Расчетные сопротивления бетона получают путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

— расчетное сопротивление бетона осевому сжатию, где— коэффициент надежности по бетону при сжатии, зависящий от вида бетона.

— расчетное сопротивление бетона осевому растяжению, где— коэффициент надежности по бетону при растяжении, зависящий от вида бетона.

При расчете элементов конструкций расчетные сопротивления бетона Rb и Rbt в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы бетона γbi, которые учитывают следующие факторы: длительность действия нагрузки; многократную повторяемость нагрузки; условия, характер и стадию работы конструкции; способ ее изготовления; размеры сечения и т.д.

Читайте также:  Раствор и бетон: пропорции, снип, фото

Нормативные и расчетные сопротивления арматуры

Нормативные сопротивления арматуры Rsn устанавливают с учетом статистической изменчивости прочности и принимают равными наименьшим контролируемым значениям предела текучести, физического или условного (равного значению напряжений, соответствующих остаточному относительному удлинению 0,2%). Доверительная вероятность нормативного сопротивления арматуры – 0,95.

Расчетные сопротивления арматуры растяжению определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

,

где— коэффициент надежности по арматуре, зависящий от класса арматуры.

Расчетные сопротивления арматуры сжатию при наличии сцепления арматуры с бетоном:, но не более 400 МПа.

При расчете элементов конструкций расчетные сопротивления арматуры в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы арматуры γsi, которые учитывают возможность неполного использования прочностных характеристик арматуры в связи с неравномерным распределением напряжений в сечении, низкой прочностью бетона, условиями анкеровки и т.д.

При расчете элементов на действие поперечной силы расчетное сопротивление растяжению поперечной арматуры снижают введением коэффициента условий работы в связи с неравномерным нагружением поперечных стержней γs1 = 0,8:.

Источник: https://avisavto.ru/raschetnoe-soprotivlenie-betona/

Что такое расчетное сопротивление бетона и как его вычислить

26-05-2017 Строительство

Как мы знаем, бетон есть очень неоднородным материалом, в следствии его показатели прочности смогут значительно отличаться кроме того в пределах нескольких опытных образцов, изготовленных из одной смеси. Но, как при таких условиях вычислить прочность цементной конструкции, к примеру, на сжатие? Для этого применяют расчетные значения, в этом случае это будет расчетное сопротивление бетона сжатию.

Потом мы рассмотрим, что такое расчетные характеристики и как их определить, и ознакомимся с некоторыми другими параметрами данного материала.

Как взять расчетное сопротивление

Для обеспечения достаточной надежности цементных конструкций, при исполнении расчетов, применяют такие значения прочности цементного материала, каковые как правило ниже фактических показателей в конструкциях. Эти значения именуют расчетными, соответственно, они напрямую зависят от фактических либо по-другому – нормативных значений.

Нормативные характеристики

Еще совсем сравнительно не так давно (до 1984 г) единственной чёртом прочности бетона была его марка (М). Данный параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с возникновением СНиП 2.03.01 были кроме этого введены классы по прочности на сжатие.

По сути, класс есть нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 либо гарантированной доверительной возможностью 95%, и риском 5 процентов. Нужно заявить, что в этом случае брать среднюю крепость рискованно, поскольку имеется 50 процентов возможности того, что в страшном сечении конструкции она окажется ниже средней.

Одновременно с этим брать за базу минимальный показатель через чур накладно, поскольку это приведет к значительному неоправданному повышению сечения конструкции.

Так, основным параметром прочности в нашем случае есть класс. Но, кроме осевого сжатия, серьёзной чёртом есть еще и осевое растяжение. Устойчивость к осевому растяжению (в случае если данный параметр не контролируется) определяют в зависимости от класса B:

Класс B10 B7,5 B5 B3,5
Устойчивость к осевому растяжению (МПа) 0,85 0,70 0,55 0,39

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, делают расчет с определенным запасом прочности. Чтобы получить данный запас, удельное сопротивление бетона делят на определенный коэффициент, и так данный показатель при расчетах уменьшают.

Расчетное сопротивления бетона растяжению либо сжатию возможно вычислить по следующей формуле — R= Rn /g, где g – есть коэффициентом надежности по прочности. В большинстве случаев данное значение образовывает 1,3. Но, чем менее однородный массив, тем данный коэффициент больше.

Действительно, делать расчет не обязательно, поскольку взять необходимые значения разрешает таблица расчетного сопротивления бетона сжатию и растяжению:

B20 B15 B12,5 B10 B7,5 B5 B3,5
Устойчивость к осевому сжатию (МПа) 11,5 8,5 7,5 6 4,5 2,8 2,1
Устойчивость к осевому растяжению (МПа) 0,90 0,75 0,66 0,57 0,48 0,37 0,26

Другие характеристики

Кроме вышерассмотренных параметров, при исполнении некоторых расчетов, требуются и другие характеристики бетона.

Потом мы рассмотрим кое-какие из них:

  • Удельное электрическое сопротивление бетона (p)- есть сопротивлением прохождению электрического тока через цементный кубик размером 1х1х1 см. На данный параметр жидкой фазы воздействует содержание щелочей в цементе и соотношение жидкости. В зависимости от этого, значение может изменяться в пределах от 4 до 20 Ом. Определение данной характеристики может потребоваться при организации своими руками обогрева раствора электродами. Чем выше это значение тем, соответственно, масса нагревается сильней.
  • Водопроницаемость – данный параметр обозначает громаднейшее давление воды, которому может противостоять материал, т.е. при которых вода не имеет возможности просочиться через цементный пример. По водонепроницаемости существуют марки W2-W20, цифры марки наряду с этим говорят о давлении в кгс/см2, при котором структура способна противостоять воде.
  • Воздухонепроницаемость – данная черта зависит от плотности структуры. Сопротивление бетона прониканию воздуха по ГОСТу 12730.5-84 может составлять 3,1-130,2 с/см3, в зависимости от его марки по водопроницаемости.
  • Морозоустойчивость – свойство переносить многократные циклы замерзания и оттаивания без утраты фундаментальных свойств. Существуют марки с градацией от F50 до F1000, где цифры обозначают количество циклов замерзания/оттаивания, каковые способен выдержать материал. На практике, среднестатистическая морозоустойчивость в простом постройке находится в пределах F100-F200.
  • Теплопроводность – есть одним из наиболее значимых параметров ограждающих конструкций, который зависит от плотности структуры. Чем больше ее пористость, тем меньше теплопроводность, поскольку воздушное пространство, заполняющий поры, есть хорошим теплоизолятором. При плотности при плотности 1200 кг/м3, теплопроводность материала образовывает 0,52 Вт/(м-°С). Исходя из этого в качестве теплоизоляционных материалов применяют легкие газо- либо пенобетонные блоки, каковые имеют пористую структуру.

Вывод

Расчетное сопротивление есть очень важным параметром при проектировании важных несущих конструкций. Инструкция по расчету этих значений достаточно несложная и сводится к занижению нормативных черт, методом их деления на соответствующие коэффициенты.

Из видео в данной статье возможно взять дополнительную данные по данной теме.

Источник: http://blog-oremonte.ru/stroitelstvo/chto-takoe-raschetnoe-soprotivlenie-betona-i-kak-ego-vychislit.html

Расчетное сопротивление бетона

ADs+Place

Для предельных состояний первой груп­пы (Rb и Rbt) расчетное сопротивление получают посредством деления со­ответствующих нормативных сопротивлений на коэффициенты надежности по бетону при осевом сжатии γbc=1,3 и при осевом растяжении γbc= 1,5. Данные коэффициенты учитывают возможные отклонения норма­тивных сопротивлений в неблагоприятную сторону вследствие факторов, не поддающихся статистическому учету (замены вида цемента, крупных и мелких заполнителей, условий твердения). По мере возрастания класса бетона выше В40 увеличивается их хрупкость (уменьшаются деформа­ции ползучести), по϶тому расчетные сопротивления сжатию тяжелого бе­тона классов В50, В55, В60 снижают умножением соответственно на ко­эффициенты 0,95; 0,925; 0,9.

При расчете элементов конструкций расчетные сопротивления бето­на для предельных состояний первой группы Rb и Rbt снижают (или повы­шают) посредством умножения на коэффициенты условий работы γbi учитывающие особенности свойств бетона, длительность действия на­грузки и её многократную повторяемость, условия и стадию работы кон­струкции, способ её изготовления, размеры сечения ( табл. 15 СНиП 2.03.01-84).

Расчетные сопротивления бетона для предельных состояний второй группы (Rb.ser и Rbt.ser) принимают равными нормативным сопротивлени­ям, т. е. вводят в расчет с коэффициентом надежности по бетону γ = 1.

Это обусловлено тем, что снижение прочности бетона проис­ходит на одном напряженном участке, в то время как предельные состоя­ния второй группы определятся в основном деформациями бетона по всей длине элементов.

Последнее выравнивает неоднородность деформи­рования и повышает надежность конструкции.

Принимают коэффициент условий работы бетона γbi = 1, за исключением случаев расчета элементов по образованию трещин при многократном действии нагрузки, когда γbi= γb1 (табл. 16 СНиП 2.03.01-84).

Читайте также

  • — Расчетное сопротивление бетона

    Для предельных состояний первой груп­пы (Rb и Rbt) расчетное сопротивление получают посредством деления со­ответствующих нормативных сопротивлений на коэффициенты надежности по бетону при осевом сжатии &… [читать далее].

  • Источник: http://referatwork.ru/info-lections-33/articles/view/900_raschetnoe_soprotivlenie_betona

    Ссылка на основную публикацию